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Abstract—Wireless sensor network localization technique re-
mains an open research topic due to its challenges on reducing the
location estimation error and cost of the localization algorithm
itself. For a large mobile network localization cost becomes
increasingly important due to the exponential increment of the
algorithmic cost. Conversely sacrificing localization accuracy to
a great extent is not acceptable at all. To address the localization
problem of wireless sensor network this paper presents a novel
algorithm based on cross-entropy (CE) method. The proposed
centralized algorithm estimates location information of the nodes
based on the measured distances of the neighboring nodes. The
algorithm minimizes the estimated location error by using the CE
method. Simulation results compare the proposed CE approach
with DV-Hop and Simulated Annealing-based localizations and
show that this approach provides a balance between the accuracy
and cost. When compared with DV-Hop, the CE approach is
costlier but much more accurate. When compared with Simulated
Annealing-based method, this approach offers the same level of
accuracy but is significantly less costly.

I. INTRODUCTION

Sensor network node location information is important for
numerous reasons. In many cases the sensed data has no value
without the location information. The location information can
be used by routing and other protocols, algorithms and ser-
vices. The straightforward solution to the localization problem
of equipping nodes with GPS receivers is not a suitable option
because GPS receivers require line of sight to GPS satellites.
Moreover GPS is costly and power hungry. Therefore for
the randomly deployed sensor networks various localization
algorithms has been introduced where only a small number
of sensor nodes are equipped with GPS receivers and other
sensor nodes derive their locations by using the localizations
techniques [1][2].

Though localization is not a recent topic it still has issues
and challenges to handle because some solutions are not cheap
and some have unexpected level of errors. WSN Localiza-
tion techniques are largely categorized into range-based and
range-free localizations. The range-based technique involves
in deriving absolute distances or angles whereas the range-
free technique involves in deriving distances from non-anchor
nodes to anchor nodes. Well known range-based localization
techniques are receive signal strength indicator (RSSI) [3],
angle-of-arrival (AoA), time of arrival (ToA) [4][5] or time
difference of arrival (TDoA) [6][7] etc.

Ideally distance can be measured from transmit and receive
signal strengths of radios. If transmit and receive signal

strengths are pi and pj than the distance can be measured
as dij = β

√
pi/pj . Where β is known as path loss exponent

and can be calculated by measuring power at unit distance.
But this ideal situation never exists because of the presence
of noise. Ref [8] describes the source of noise that can affect
the localization estimation from signal strength. Practically,
RSS estimation is affected by log-normal shadowing [9].
Where the receive signal varies as [µ, σ2]. Where µ and
σ are mean and variance and often taken as zero and one
respectively. The error in signal strength estimation introduces
error in measured distances. Therefore RSSI algorithm has low
accuracy primarily because of multi-path fading. One straight
forward solution is taking average (such as auto regressive
moving average (ARMA) [10]) of power measurements be-
fore calculating the location of the nodes. Unfortunately this
approach requires a large number of measurements to get a
desired result [11][12][13]. Taking the measurement requires
active transmission therefore costly in terms of energy usage.

In time-based methods like ToA and TDoA propagation
time is used to derive the distance. But these time-based
protocols suffers where the line of sight does not exist. AoA is
highly accurate but requires expensive hardware. Due to the
specific hardware requirement for the range-based approach
a range free approach is considered more appropriate in the
context of WSNs to limit the hardware cost of the nodes.

Centroid scheme [14] and DV-Hop scheme [15] are well
known range-free schemes in the literature. In centroid scheme
anchors broadcast their locations. Nodes receive the broad-
casts and calculate node position by a simple measure of
centroid by (xest, yest) = (

∑
xi/N,

∑
yi/N). Here (xi, yi)

is the coordinate of ith anchor and N is the total number
of anchors where the node is receiving beacons. This coarse
grain localization algorithm is simple, lightweight and easy
to implement. A number of weighted centroid localization is
proposed to improve the accuracy by incorporating weights
for each neighbor nodes [16][17]. Further improvement of the
scheme is made by incorporating the adaptive weight for the
centroid algorithm [18].

Well referred DV-Hop algorithm [15] is based on dis-
tance vector routing. Nodes calculate the hop distances
from the anchors. Then the distance is measured by
multiplying the hop distance to the average hop size.
Where the hop size of the anchor is calculated by
Hopsizei =

∑√
(xi − xj)2 + (yi − yj)2/

∑
(hj). Here



(xi, yi) and (xj , yj) are the coordinates of anchor i and j and
hj is the hop distance from anchor j to i. In RSSI based DV-
Hop (RDV-Hop) the authors combine and develop a hybrid
localization algorithm that incorporates RSSI and DV-Hop
schemes and found improvement over DV-Hop accuracy [19].

Ref [20] uses maximum likelihood (ML) estimation tech-
nique to estimate the position of the node by minimizing the
difference between the measured and estimated distances. ML
uses well-known minimum mean square error (MMSE) [22]
algorithm for this estimation. ML suffers from poor accuracy
if the number of neighbors is small [12][21]. Simulated
Annealing (SA)-based localization [23] provides similar min-
imization technique where the minimization is performed by
the optimization algorithm known as simulation annealing. But
this scheme requires a large computational resource to solve
the optimization problem.

Therefore among the localization algorithms in state of the
art some are costly in terms of hardware, some are costly in
terms of energy and computation, and some are simply too
inaccurate to be practically used. Attempt to get a reasonable
solution we formulate a localization algorithm that uses cross-
entropy (CE)-based optimization technique [24] while deriving
the x, y coordinates of the non-anchor sensor nodes in the
network.

The rest of the paper is organized as follows: Section II
discusses the proposed CE method of localization that com-
prises of distance measurement and collection steps, definition
of cost function in our case along with CE optimization
technique. Section III presents the simulation results to justify
the necessity of such proposal and finally Section IV concludes
the paper along with future directions.

II. CROSS-ENTROPY ALGORITHM FOR LOCALIZATION

Primarily we have N number of nodes randomly deployed
in the network, among them A number of nodes are anchor
nodes. The localization algorithm needs to determine x and y
coordinates of N−A number of nodes. CE-based localization
technique is location estimation technique where the location
is estimated based on the derived distances of the nodes from
its neighborhood. The distance is calculated based on transmit-
receive signal strengths measures. Fig. 1 shows the steps in
detail for the proposed CE-based localization algorithm.

A. Collecting measurements

During the initialization of the protocol each node in the
network:

• Creates a neighbor list
• Measures neighbor distances by transmit-receive signal

strengths
• Updates central computer with aforementioned informa-

tion via sink
Upon receiving data the central computer uses CE-based

localization algorithm and derive the unknown locations for
the non-anchor nodes. Before going into the CE method
we first define the cost function used by the optimization
algorithm.

B. Cost function

Due to the unreliable nature of the wireless medium the
distance measure introduces error. A common approach is to
estimate the location of the node by minimizing the estimated
error [20][23]. The CE method incorporate the same cost
function to be minimized. Let dij is the measured distance
among node i and j. Let (xi, yi) and (xj , yj) is the estimated
coordinates of the node i and j by the algorithm. Here the es-
timated distance is d̂ij =

√
(x̂i − x̂j) + (ŷi − ŷj). Therefore

the cost function to be minimized can be expressed as

costi =
N∑

i=A+1

∑
jϵni

(d̂ij − dij)
2 (1)

Where ni is the set of all neighboring nodes of node i. With
the measured distances and the aforementioned cost function
CE algorithm solve the localization problem in an iterative
learning manner.

C. Cross-entropy optimization algorithm

CE localization algorithm attempts to find the best coordi-
nate of the unknown sensor node by minimizing the estimated
error. The underlying technique in CE optimization is to
generate samples based on the means and variances. Algorithm
than selects the best sample as next state while it learns about
the next generation sample means and variances based on
the best set of samples in the population. The CE algorithm
first generates random states for all nodes. It then generates
a set of populations for each state based on the means and
variances. The initial means and variances can simply be
random numbers. Algorithm then finds the cost for all the
population based on the cost function. If the minimum cost
of the population set is less than the cost function of the
current state than the state is updated otherwise a new set of
population is generated. In each update of state the algorithm
learns about a better sample generation characteristics. Where
the characteristics can be defined as the mean and variance
used to generate the samples. Therefore if there is an instance
of updated state the mean and variance is also updated based
on the best population set. CE algorithm updates the states
iteratively until the cost or error is within the acceptance limit.

For each unknown node ni the localization algorithm
first randomly generates the coordinates (xi, yi) alternatively
known as states of the nodes where ni is a set of all non-anchor
nodes denoted by n1 : nN−A. Algorithm also initializes means
µ and variances σ for all xi and yi. Generally the initial means
and variances are set of random numbers and set of ones
respectively. The cost of all the initialized states of the nodes
are determined and subsequently known as initial BestCosti.

After initialization CE algorithm enters into an iterative
mode and update the states until the desired refinement is
achieved. This control parameter is known as variance mini-
mum γ. Another important control parameter is the learning
rate. Generally two different learning rates are used for the
means and variances denoted as α and β respectively.



The iterative method starts with generating a population of
S number of samples for all xi and yi based on the means
and variables of corresponding xi and yi. The samples are
than evaluated and rated by the cost of a particular sample. If
the cost of the best sample is less than BestCosti than the
BestCosti is replaced by the cost of the best sample. The
state (xi, yi) is subsequently updated with the best sample for
the particular node.

Another parameter of the algorithm is update sample num-
ber M . Algorithm then select the best M samples and
find the mean and variance of the samples by xµbesti =
mean(xbest1 : xbestM ) and xσbesti = std(xbest1 :
xbestM ) respectively. The mean of the best samples are
used to update the corresponding mean by xi by xµi =
α∗xµi+(1−α)∗xµbesti for the next generation of samples.
Similarly xσi = β ∗ xσbesti + (1 − β) ∗ xσi is used to
update the variances of xi. yµi and yσi are updated in a
similar fashion. The trained means and variances are the key
properties of the next generation of samples. Superior samples
in successive generations help the algorithm estimating better
states (coordinate in our case) in successive iterations.

Alternatively if the cost of the best sample is less than
BestCosti than the population set is discarded and another
set of samples is generated. After completion of iterations the
final state of i is the estimated location of the particular sensor
node.

III. SIMULATION RESULTS

We simulate the CE-based localization algorithm in Matlab.
A total number of 100 nodes are placed in 100m×100m
field. Here four anchor nodes are placed in the four corners
of the field and rests of the nodes are placed randomly in
the whole area. We assume that the network is equipped
with radios having uniform transmission range denoted by R.
Here radio range R is taken as 20m. We simulate error in
distance measurement with log-normal shadowing effect [9]
described in Section I with mean µ and variance σ as 0 and
1 respectively.

CE control parameter variance minimum γ needs to be small
enough to run the simulation reasonably long enough to get
a good estimation. Then again setting γ too small make the
simulation slow without much improvement. We set γ = 10−3

in our case. Learning rates α and β are set as 0.7 and 0.9
respectively. Finally sample number S and best sample number
M are taken as 100 and 50 respectively.

Fig. 2 shows the sensor field with normalize distances
where the anchors are 45% of the total nodes. In this specific
arrangement the error is very small. In our results we present
two different types of errors: (i) error in each node defined
as normalize distance between the original and estimated
node coordinates and (ii) average error in the field defined
in Equation 2 [23].

error = (1/(N −A)) ∗ (
N∑

i=A+1

((xi − x̂i)
2 + (yi − ŷi)

2)/R2)

(2)

Cross-entropy based localization algorithm
N : Total nodes
A: Anchor nodes
µ: Means
σ: Variances
α: Learning rate for means
β: Learning rate for variances
γ: Variance minimum

Node level measurements for all node i
Create neighbor list
Measure distances by Tx-Rx signal strengths
Update central computer via sink

Algorithm level at central location
for all unknown node i

Randomly initialize (xi, yi) coordinates
Randomly initialize µ and σ for xi and yi
Find cost for (xi, yi) and assign to initial BestCosti by∑N

i=M+1

∑
jϵNi

(d̂ij − dij)
2

end
while (max(σ) < γ)

for all i
Generate S samples for xi and yi
Find costs for corresponding samples
if (min cost of the samples < BestCosti)

Update state (xi, yi) with the best sample
Update BestCosti
Update µ and σ
Select M number of best population

(xbest1, ybest1) . . . (xbestM , ybestM )
Take µbest and σbest of the selected bests

xµbesti = mean(xbest1 : xbestM )
yµbesti = mean(ybest1 : ybestM )
xσbesti = std(xbest1 : xbestM )
yσbesti = std(ybest1 : ybestM )

Update µ and σ with α and β respectively
xµi = α ∗ xµi + (1− α) ∗ xµbesti
yµi = α ∗ yµi + (1− α) ∗ yµbesti
xσi = β ∗ xσbesti + (1− β) ∗ xσi

yσi = β ∗ yσbesti + (1− β) ∗ yσi

end
end

end

Fig. 1. Cross-entropy based localization algorithm



Where, (xi, yi) and (x̂i, ŷi) are the absolute and estimated
locations of the node i. N and A are total number of nodes
and total number of anchors in the network [23].

One common downside of the cost minimization techniques
is reported and known as flipped ambiguity [25][26][27]. In
case the neighborhood of a node are located in such way
that they are approximately on a same line then the estimated
position may be in the flipped location with respect to the
line. Fig. 3 shows a deployment with 30% of anchors with
bigger error not only due to the less number of anchor nodes
but also due to the aforementioned flipped ambiguity. The
other source of error is the absence of anchor in a region
due to the non-uniform distribution of the anchor nodes. The
flipped neighborhood indicated in the Fig. 3 shows the uneven
distribution of the anchor in the specified region. In some
cases the whole neighborhood is flipped and contributes to
upsurge of error. Correcting the flipped ambiguity in the CE
localization technique necessitates further research and we
have intention to contribute to this area in our future work.

Fig. 4 shows the error in successive rounds. The error decays
exponentially. Therefore with a small number of iterations
the algorithm converges to its minima. Though the figure
demonstrates a single event of error in rounds we observe
many instances and almost always this is the case where the
convergence is quick and efficient. This is an important crite-
rion of selecting an optimization algorithm. A small number
of rounds in convergence demonstrate algorithm efficiency in
term of its cost. Fig. 5 displays the estimated locations of a
specific node in rounds alternatively the searching path of that
particular run. Both Fig. 4 and Fig. 5 conform that the search
converges to the minima with exponentially decayed cost.

In order to evaluate the performance of our proposed
CE algorithm, we compare it against the two well-known
localization algorithms, namely, DV-Hop algorithm [15] and
Simulated Annealing (SA)-based algorithm [23].

SA algorithm takes much more iterations to converge com-
pared to CE. On the other hand per iteration of CE takes longer
time than that of SA. Therefore to make a fair comparison Fig.
6 shows the error performance of CE and SA algorithm with
respect to time thereby depicts the core algorithmic efficiency
of CE over SA.

Fig. 7 shows error performance of individual nodes with
30% of anchor nodes. Intuitively the big spikes in the CE
method are due to the flipped nodes and can be eliminated
by incorporating appropriate measure. Fig. 8 shows algorithm
error performance compared with different percentages of
the anchor deployments. Here each error point is calculated
by averaging 10 measurements. Both of the figures reveal
that DV-Hop provides a poor performance compare to the
other two. When there are less number of anchors the error
becomes more and more is a common phenomenon for all the
three cases which is quite expected though DV-Hop has the
worst increasing rate of error with decreasing percentage of
anchors. Especially the performance becomes too poor when
the percentage of anchor node is small. On the other hand SA
approach provides the best error performance but with a cost
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Fig. 2. Node locations in the network where the anchors are 45% of the
total nodes. Distances are normalized into the range 0.0 to 1.0.

of slow algorithmic convergence. Fig. 9 demonstrates the poor
efficiency of SA algorithm in terms of its algorithmic runtime.

Therefore in case of a large mobile sensor application SA
approach of localization can never be justifiable because of its
higher processing cost. Alternatively the proposed algorithm
becomes a suitable approach of localization with a reasonably
low processing cost with a little sacrifice of localization accu-
racy. One simplest and straight forward way to determine the
required number of rounds in algorithm is to track the error in
successive rounds. The algorithm exit from the iterative loop if
the current performance compare to the previous performance
does not improve more than a predefined threshold. Therefore
the runtime is calculated by time stamping the nth round when
the (n + 1)th round cannot bring the error further down. 10
measurements are taken to get the runtime average for each
deployment.

IV. CONCLUSIONS AND FUTURE WORKS

A novel cross-entropy-based localization algorithm is de-
vised in the context of wireless sensor networks. The algorithm
attempts to estimate the locations of the nodes in the networks
centrally from the distance measured based on transmit-receive
signal strengths. Error introduced by the unreliable wireless
communications is minimized by CE based optimization tech-
nique. Simulation results show that the algorithm can estimate
the location coordinate of sensor nodes with reasonably good
accuracy with low computational costs. Mobile sensor network
with large number of nodes can be benefited by this compu-
tationally efficient localization technique.

The cost function of CE takes equal weights for all the
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0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of iterations

E
rr

or

 

 
Cross entropy (CE)

Fig. 4. Numbers of errors in rounds.

neighbor distances in the neighborhood. In practice some
neighbor information is more reliable than the other [28].
Therefore a possible future improvement of the algorithmic
cost function is to incorporate weights base on the reliability of
the particular neighbor. We also intend to contribute to the area
of flipped ambiguity problem in the CE localization approach
one common drawback of the error minimizing technique
based estimation algorithm for localization.

ACKNOWLEDGMENT

This research was sponsored by the Government of Abu
Dhabi, United Arab Emirates through its funding of Masdar
Institute of Science and Technology’s research project on

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
0.18

0.2

0.22

0.24

0.26

0.28

0.3

x−axis

y−
ax

is Final state

Initial state

Fig. 5. Estimated location of a specific sample node in rounds.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (sec)

E
rr

or

 

 
Cross entropy (CE)
Simulated annealing (SA)

Fig. 6. Error over algorithmic runtime.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Node number

E
rr

or

 

 
DV Hop
Cross entropy (CE)
Simulated annealing (SA)

Fig. 7. Error in each node.



25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of anchors

E
rr

or

 

 
Cross entropy (CE)
Simulated annealing (SA)
DV Hop

Fig. 8. Average error.

25 30 35 40 45 50
0

20

40

60

80

100

120

140

Number of anchors

T
im

e 
(s

ec
)

 

 
Simulated annealing (SA)
Cross entropy (CE)
DV−HOP

Fig. 9. Simulation runtime.

“Monitoring and Optimization of Renewable Energy Gener-
ation using Wireless Sensor Data Analytics” (award number
10XAAA1).

REFERENCES

[1] J. Bachrach and C. Taylor, “Localization in Sensor Networks,” Handbook
of Sensor Networks: Algorithms and Architectures, 2005.

[2] A. Pal, “Localization Algorithms in Wireless Sensor Networks: Current
Approaches and Future Challenges” Network Protocols and Algorithms,
vol. 2, no. 1, pp. 45-78, 2010.

[3] T.S.Rappapport, Wireless Communications: Principles and Practice. Pren-
tice Hall: New Jersey, pp.50-143,1996.

[4] L. Girod, D. Estrin, “Robust range estimation using acoustic and n mul-
timodal sensing,” in Proc. IEEE International Conference on Intelligent
Robots and Systems, vol. 3, pp. 1312-1320, Hawaii, USA, November,
2001.

[5] Y. Chan, W. Tsui, H. So and P. Ching, “Time-of-arrival based localization
under NLOS conditions” IEEE Transactions on Vehicular Technology,
vol. 55 , vo. 1, pp. 17-24, 2006.

[6] A. Prorok, P. Tome, A. Martinoli, “Accommodation of NLOS for ultra-
wideband TDOA localization in single- and multi-robot systems” in
Proc. IEEE International Conference on Indoor Positioning and Indoor
Navigation (IPIN), pp. 1-9, Portugal, 21-23 September, 2011.

[7] X. Cheng, T. A, G. Xue, D. Chen, “TPS: a time-based positioning scheme
for outdoor wireless sensor networks,” in Proc. IEEE INFOCOM, pp.
2685-2696, Hong Kong, China, 7-11 March, 2004.

[8] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N.S. Correal, “Locating the nodes: cooperative localization in wireless
sensor networks,” IEEE Signal Processing Magazine, vol. 22 no. 4 pp.
54-69, 2005.

[9] J. Aitchison, and J.A.C. Brown, “The Lognormal Distribution,” Cam-
bridge University Press, 1957.

[10] P. J. Brockwell, and R. A. Davis, “Time Series: Theory and Methods,”
Springer 2nd edition, 2009.

[11] G. Zanca, F. Zorzi, A. Zanella, and M. Zorzi, “Experimental compar-
ison of RSSI-based localization algorithms for indoor wireless sensor
networks,” in Proc. Real-World Wireless Sensor Networks (REALWSN)’
pp. 1-5, Glasgow, Scotland, April 1, 2008.

[12] C. Chang and A. Sahai, “Estimation bounds for localization,” in Proc.
IEEE Sensor and Ad Hoc Communications and Networks (SECON), Santa
Clara, California, 4-7 October, 2004.

[13] K. Langendoen and N. Reijers, “Distributed localization in wireless
sensor networks: a quantitative comparison,” Computer Networks, vol.
43, no. 4, pp. 499-518, 2003.

[14] N. Bulusu, J. Heidemann and D. Estrin, “GPS-less Low Cost Outdoor
Localization for Very Small Devices,” IEEE Personal Communications
Magazine, vol. 7 no. 5 pp. 28-34, October 2000.

[15] D. Niculescu and B. Nath, “DV Based Positioning in Ad hoc Networks,”
Journal of Telecommunication Systems, vol. 22, no. 1-4, pp. 267-280,
2003.

[16] J. Blumenthal, R. Grossmann, F. Golatowski and D. Timmermann,
“Weighted Centroid Localization in Zigbee-based Sensor Networks,” in
Proc. IEEE International Symposium on Intelligent Signal Processing,
Xiamen, China, Octobor 2007.

[17] J. Wang, P. Urriza, Y. Han and D. Cabric, “Weighted Centroid Local-
ization Algorithm: Theoretical Analysis and Distributed Implementation,”
IEEE Transactions on Wireless Communications, vol. 10, no. 10, pp.
3403-3413, 2011.

[18] R. Behnke and D. Timmermann, “AWCL: Adaptive Weighted Centroid
Localization as an Efficient Improvement of Coarse Grained Localiza-
tion,” in Proc. IEEE Positioning, Navigation and Communication, pp.
243-250, Hannover, Germany, March, 2008.

[19] S. Tian, X. Zhang, P. Liu, P. Sun and X. Wang, “A RSSI-Based DV-Hop
Algorithm for Wireless Sensor Networks,” in Proc. IEEE International
Conference on Wireless Communications, Networking and Mobile Com-
puting, pp. 2555-2558, Shanghai, China, 21-25 September, 2007.

[20] N. Patwari, R. O’Dea, and Y. Wang, “Relative location in wireless
networks,” in Proc. IEEE Vehicular Technology Conference (VTC), vol.
2, pp. 1149-1153, Rhodes, Greece, 6-9 May, 2001.

[21] X. Nguyen and T. Rattentbury, “Localization algorithms for sensor
networks using RF signal strength,” University of California at Berkeley,
Tech. Report, May 2003.

[22] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice Hall. pp. 344350, 1993.

[23] A. A. Kannan, G. Mao and B. Vucetic, “Simulated Annealing based
Wireless Sensor Network Localization,” Journal of Computers, vol. 1,
no. 2, pp. 15-22, May 2006.

[24] R. Y. Rubinstein, and D. P. Kroese, “The Cross-Entropy Method: A Uni-
fied Approach to Combinatorial Optimization, Monte-Carlo Simulation,
and Machine Learning,” Springer-Verlag, New York, 2004.

[25] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distributed network
localization with noisy range measurements,” in Proc. Second Interna-
tional Conference on Embedded Networked Sensor Systems (SenSys), pp.
50-61, Baltimore, MD, USA, November. 2004.

[26] T. Eren, D. Goldenburg, W. Whiteley, Y. Yang, A. Morse, B. D. O.
Anderson and P.N. Belhumeur, “Rigidity, computation, and randomization
in network localisation,” in IEEE INFOCOM, vol. 4, pp. 2673-2684, Hong
Kong, China, 7-11 March 2004.

[27] D. Goldenburg, W. Krishnamurthy, A.and Maness, Y. Yang, and A.
Young, “Network localization in partially localizable networks,” in IEEE
INFOCOM, vol. 1, pp. 313-326, Miami, Florida, 13-17 March, 2005.

[28] J. Desai and U. Tureli, “Evaluating Performance of Various Localization
Algorithms in Wireless and Sensor Networks,” in Proc. IEEE Personal,
Indoor and Mobile Radio Communications, Athens, Greece, September
2007.


